Secure IoT based Cloud Computing for Smart Grid Application

Authors

DOI:

https://doi.org/10.22105/siot.v1i2.40

Keywords:

Secure IoT services, Smart grid applications, Cybersecurity framework, Data integrity

Abstract

The integration of secure Internet of Things (IoT) cloud services within Smart Grid (SG) applications is critical for safeguarding energy management systems against emerging cyber threats. As the reliance on connected devices increases, the security vulnerabilities also escalate, potentially compromising data integrity and system reliability. This paper proposes a robust security framework designed specifically for IoT cloud services in SGs, incorporating advanced encryption, role-based access control, and real-time anomaly detection. We evaluated the framework's effectiveness through simulations that modeled various attack scenarios, yielding a decrease in data breach incidents and an improvement in response times to unauthorized access attempts. These results underscore the framework's potential to bolster the security posture of SG systems significantly. By addressing the unique challenges posed by IoT integrations, our research paves the way for more resilient energy management solutions, contributing to the advancement of security protocols that can be universally applied across IoT applications.

References

Yalli, J. S., Hasan, M. H., & Badawi, A. (2024). Internet of things (IOT): origin, embedded technologies, smart applications and its growth in the last decade. IEEE access, 12, 91357–91382. https://doi.org/10.1109/ACCESS.2024.3418995

Khalid, M. (2024). Smart grids and renewable energy systems: perspectives and grid integration challenges. Energy strategy reviews, 51, 101299. https://doi.org/10.1016/j.esr.2024.101299

Kiasari, M., Ghaffari, M., & Aly, H. H. (2024). A comprehensive review of the current status of smart grid technologies for renewable energies integration and future trends: The role of machine learning and energy storage systems. Energies, 17(16), 4128. https://doi.org/10.3390/en17164128

Raza, A., Jingzhao, L., Ghadi, Y., Adnan, M., & Ali, M. (2024). Smart home energy management systems: research challenges and survey. Alexandria engineering journal, 92, 117–170. https://doi.org/10.1016/j.aej.2024.02.033

Aldeen, Y. A. A. S., Jaber, M. M., Ali, M. H., Abd, S. K., Alkhayyat, A., & Malik, R. Q. (2024). Electric charging station management using IoT and cloud computing framework for sustainable green transportation. Multimedia tools and applications, 83(10), 28705–28728. https://doi.org/10.1007/s11042-023-16630-0

Shruti, Rani, S., Shabaz, M., Dutta, A. K., & Ahmed, E. A. (2024). Enhancing privacy and security in IoT-based smart grid system using encryption-based fog computing. Alexandria engineering journal, 102, 66–74. https://doi.org/10.1016/j.aej.2024.05.085

Mohapatra, H., & Rath, A. K. (2019). Fault tolerance in WSN through PE-LEACH protocol. IET wireless sensor systems, 9(6), 358–365. https://doi.org/10.1049/iet-wss.2018.5229

Manikandan, J., & Srilakshmi, U. (2024). Data transmission with aggregation and mitigation model through probabilistic model in data centre. Informatica (Slovenia), 48(6), 157–172. https://doi.org/10.31449/inf.v48i6.5425

Priyadarshi, S., Subudhi, S., Kumar, S., Bhardwaj, D., & Mohapatra, H. (2025). Analysis on enhancing urban mobility with IoT-integrated parking solutions. In Interdisciplinary approaches to transportation and urban planning (pp. 143–172). IGI Global. https://doi.org/10.4018/979-8-3693-6695-0.ch006

Tooki, O. O., & Popoola, O. M. (2024). A comprehensive review on recent advances in transactive energy system: concepts, models, metrics, technologies, challenges, policies and future. Renewable energy focus , 50, 100596. https://doi.org/10.1016/j.ref.2024.100596

Kumar, A., Bag, A., Anand, A., Saha, S., Mohapatra, H., & Kolhar, M. (2025). Examining healthcare services utilizing cloud technology in intelligent urban environments. Revolutionizing healthcare systems through cloud computing and IOT (pp. 77–98). IGI Global. https://www.igi-global.com/

Rusitschka, S., Eger, K., & Gerdes, C. (2010). Smart grid data cloud: A model for utilizing cloud computing in the smart grid domain. 2010 first IEEE international conference on smart grid communications (pp. 483–488). IEEE. https://doi.org/ 10.1109/smartgrid.2010.5622089

Bhowmick, R., Mishra, S. R., Tiwary, S., & Mohapatra, H. (2024). Machine learning for brain-stroke prediction: comparative analysis and evaluation. Multimedia tools and applications, 1–33. https://doi.org/10.1007/s11042-024-20057-6

Kim, H., Kim, Y. J., Yang, K., & Thottan, M. (2011). Cloud-based demand response for smart grid: architecture and distributed algorithms. 2011 IEEE international conference on smart grid communications, smartgridcomm 2011 (pp. 398–403). IEEE. https://doi.org/10.1109/SmartGridComm.2011.6102355

Mohsenian-Rad, A.-H., & Leon-Garcia, A. (2010). Coordination of cloud computing and smart power grids. 2010 first ieee international conference on smart grid communications (pp. 368–372). IEEE. https://doi.org/10.1109/smartgrid.2010.5622069

Fayyaz, S., & Nazir, M. M. (2012). Handling security issues for smart grid applications using cloud computing framework. Journal of emerging trends in computing and information sciences, 3(2), 285–287. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=86f178580db14611701f34672bf9bbb269d4ad6e

Mishra, S. R., Mishra, S. R., Mohapatra, H., & Gourisaria, M. K. (2024). A robust approach for deepfake detection using SWIN transformer. https://doi.org/10.21203/rs.3.rs-4672886/v1

Mohapatra, H., Kolhar, M., & Dalai, A. K. (2024). Efficient energy management by using sjf scheduling in wireless sensor network. International conference on advances in distributed computing and machine learning (pp. 211–221). Springer. https://doi.org/10.1007/978-981-97-1841-2_15

Bernardo, V., Curado, M., Staub, T., & Braun, T. (2011). Towards energy consumption measurement in a cloud computing wireless testbed. 2011 first international symposium on network cloud computing and applications (pp. 91–98). IEEE. https://doi.org/10.1109/NCCA.2011.22

Bjelica, M. Z., Mrazovac, B., Vojnovic, V., & Papp, I. (2012). Gateway device for energy-saving cloud-enabled smart homes. 2012 proceedings of the 35th international convention MIPRO (pp. 865–868). IEEE. https://ieeexplore.ieee.org/abstract/document/6240764

Hong, I., Byun, J., & Park, S. (2012). Cloud computing-based building energy management system with zigbee sensor network. 2012 sixth international conference on innovative mobile and internet services in ubiquitous computing (pp. 547–551). IEEE. https://doi.org/10.1109/IMIS.2012.20

Johnson, E., Seyi-Lande, O. B., Adeleke, G. S., Amajuoyi, C. P., & Simpson, B. D. (2024). Developing scalable data solutions for small and medium enterprises: challenges and best practices. International journal of management & entrepreneurship research, 6(6), 1910–1935. https://doi.org/10.51594/ijmer.v6i6.1206

Bhadani, U. (2024). Pillars of power system and security of smart grid. International journal of innovative research in science engineering and technology, 13(7), 13888–13902. https://www.researchgate.net

Boopathy, P., Liyanage, M., Deepa, N., Velavali, M., Reddy, S., Maddikunta, P. K. R., … & Pham, Q. V. (2024). Deep learning for intelligent demand response and smart grids: A comprehensive survey. Computer science review, 51, 100617. https://doi.org/10.1016/j.cosrev.2024.100617

Vieira, C. C. A., Bittencourt, L. F., Genez, T. A. L., Peixoto, M. L. M., & Madeira, E. R. M. (2024). RAaaS: Resource allocation as a service in multiple cloud providers. Journal of network and computer applications, 221, 103790. https://doi.org/10.1016/j.jnca.2023.103790

Agnew, D., Boamah, S., Bretas, A., & McNair, J. (2024). Network security challenges and countermeasures for software-defined smart grids: A survey. Smart cities, 7(4), 2131–2181. https://doi.org/10.3390/smartcities7040085

Knapp, E. D. (2024). Industrial network security: securing critical infrastructure networks for smart grid, SCADA, and other industrial control systems. Elsevier. https://doi.org/10.1016/C2022-0-02315-1

Eusufzai, F., Bobby, A. N., Shabnam, F., & Sabuj, S. R. (2024). Personal internet of things networks: An overview of 3GPP architecture, applications, key technologies, and future trends. International journal of intelligent networks, 5, 77–91. https://doi.org/10.1016/j.ijin.2024.02.001

Borra, P. (2024). Comparison and analysis of leading cloud service providers (AWS, Azure and GCP). International journal of advanced research in engineering and technology (IJARET), 15(3), 266–278. https://www.researchgate.net

Mohammed, A. J., Abdulrahman, L. M., Abdulkareem, N. M., & Salim, B. W. (2024). Web technology and cloud computing security based machine learning algorithms for detect DDOS attacks. Journal of information technology and informatics, 3(1). https://scholar.google.com

Gorantla, V. A. K., Gude, V., Sriramulugari, S. K., Yuvaraj, N., & Yadav, P. (2024). Utilizing hybrid cloud strategies to enhance data storage and security in e-commerce applications. 2024 2nd international conference on disruptive technologies, ICDT 2024 (pp. 494–499). IEEE. https://doi.org/10.1109/ICDT61202.2024.10489749

Mahajan, H., & Reddy, K. T. V. (2024). Secure gene profile data processing using lightweight cryptography and blockchain. Cluster computing, 27(3), 2785–2803. DOI:10.1007/s10586-023-04123-6

El Mestari, S. Z., Lenzini, G., & Demirci, H. (2024). Preserving data privacy in machine learning systems. Computers and security, 137, 103605. https://doi.org/10.1016/j.cose.2023.103605

Abba Ari, A. A., Ngangmo, O. K., Titouna, C., Thiare, O., Kolyang, Mohamadou, A., & Gueroui, A. M. (2024). Enabling privacy and security in Cloud of Things: Architecture, applications, security & privacy challenges. Applied computing and informatics, 20(1–2), 119–141. https://doi.org/10.1016/j.aci.2019.11.005

Sundarasen, S., Ibrahim, I., Alsmady, A. A., & Krishna, T. (2024). Corruption’s crossroads: exploring firm performance and auditors’ role in emerging markets. Economies, 12(9), 239. https://doi.org/10.3390/economies12090239

Liu, Z., Wu, Q., Shen, X., Tan, J., & Zhang, X. (2024). Post-disaster robust restoration scheme for distribution network considering rerouting process of cyber system with 5G. IEEE transactions on smart grid, 15(5), 4478–4491. https://doi.org/10.1109/TSG.2024.3385377

Hasan, M. K., Weichen, Z., Safie, N., Ahmed, F. R. A., & Ghazal, T. M. (2024). A survey on key agreement and authentication protocol for internet of things application. IEEE access, 12, 61642–61666. https://doi.org/10.1109/ACCESS.2024.3393567

Aouedi, O., Vu, T. H., Sacco, A., Nguyen, D. C., Piamrat, K., Marchetto, G., & Pham, Q. V. (2024). A survey on intelligent internet of things: applications, security, privacy, and future directions. IEEE communications surveys and tutorials. https://doi.org/10.1109/COMST.2024.3430368

Published

2024-11-29

How to Cite

Rath, S. . (2024). Secure IoT based Cloud Computing for Smart Grid Application. Smart Internet of Things, 1(2), 128-138. https://doi.org/10.22105/siot.v1i2.40

Similar Articles

1-10 of 18

You may also start an advanced similarity search for this article.