Secure IoT based Cloud Computing for Smart Grid Application
Abstract
The integration of secure Internet of Things (IoT) cloud services within Smart Grid (SG) applications is critical for safeguarding energy management systems against emerging cyber threats. As the reliance on connected devices increases, the security vulnerabilities also escalate, potentially compromising data integrity and system reliability. This paper proposes a robust security framework designed specifically for IoT cloud services in SGs, incorporating advanced encryption, role-based access control, and real-time anomaly detection. We evaluated the framework's effectiveness through simulations that modeled various attack scenarios, yielding a decrease in data breach incidents and an improvement in response times to unauthorized access attempts. These results underscore the framework's potential to bolster the security posture of SG systems significantly. By addressing the unique challenges posed by IoT integrations, our research paves the way for more resilient energy management solutions, contributing to the advancement of security protocols that can be universally applied across IoT applications.
Keywords:
Secure IoT services, Smart grid applications, Cybersecurity framework, Data integrityReferences
- [1] Yalli, J. S., Hasan, M. H., & Badawi, A. (2024). Internet of things (IOT): origin, embedded technologies, smart applications and its growth in the last decade. IEEE access, 12, 91357–91382. https://doi.org/10.1109/ACCESS.2024.3418995
- [2] Khalid, M. (2024). Smart grids and renewable energy systems: perspectives and grid integration challenges. Energy strategy reviews, 51, 101299. https://doi.org/10.1016/j.esr.2024.101299
- [3] Kiasari, M., Ghaffari, M., & Aly, H. H. (2024). A comprehensive review of the current status of smart grid technologies for renewable energies integration and future trends: The role of machine learning and energy storage systems. Energies, 17(16), 4128. https://doi.org/10.3390/en17164128
- [4] Raza, A., Jingzhao, L., Ghadi, Y., Adnan, M., & Ali, M. (2024). Smart home energy management systems: research challenges and survey. Alexandria engineering journal, 92, 117–170. https://doi.org/10.1016/j.aej.2024.02.033
- [5] Aldeen, Y. A. A. S., Jaber, M. M., Ali, M. H., Abd, S. K., Alkhayyat, A., & Malik, R. Q. (2024). Electric charging station management using IoT and cloud computing framework for sustainable green transportation. Multimedia tools and applications, 83(10), 28705–28728. https://doi.org/10.1007/s11042-023-16630-0
- [6] Shruti, Rani, S., Shabaz, M., Dutta, A. K., & Ahmed, E. A. (2024). Enhancing privacy and security in IoT-based smart grid system using encryption-based fog computing. Alexandria engineering journal, 102, 66–74. https://doi.org/10.1016/j.aej.2024.05.085
- [7] Mohapatra, H., & Rath, A. K. (2019). Fault tolerance in WSN through PE-LEACH protocol. IET wireless sensor systems, 9(6), 358–365. https://doi.org/10.1049/iet-wss.2018.5229
- [8] Manikandan, J., & Srilakshmi, U. (2024). Data transmission with aggregation and mitigation model through probabilistic model in data centre. Informatica (Slovenia), 48(6), 157–172. https://doi.org/10.31449/inf.v48i6.5425
- [9] Priyadarshi, S., Subudhi, S., Kumar, S., Bhardwaj, D., & Mohapatra, H. (2025). Analysis on enhancing urban mobility with IoT-integrated parking solutions. In Interdisciplinary approaches to transportation and urban planning (pp. 143–172). IGI Global. https://doi.org/10.4018/979-8-3693-6695-0.ch006
- [10] Tooki, O. O., & Popoola, O. M. (2024). A comprehensive review on recent advances in transactive energy system: concepts, models, metrics, technologies, challenges, policies and future. Renewable energy focus , 50, 100596. https://doi.org/10.1016/j.ref.2024.100596
- [11] Kumar, A., Bag, A., Anand, A., Saha, S., Mohapatra, H., & Kolhar, M. (2025). Examining healthcare services utilizing cloud technology in intelligent urban environments. Revolutionizing healthcare systems through cloud computing and IOT (pp. 77–98). IGI Global. https://www.igi-global.com/
- [12] Rusitschka, S., Eger, K., & Gerdes, C. (2010). Smart grid data cloud: A model for utilizing cloud computing in the smart grid domain. 2010 first IEEE international conference on smart grid communications (pp. 483–488). IEEE. https://doi.org/ 10.1109/smartgrid.2010.5622089
- [13] Bhowmick, R., Mishra, S. R., Tiwary, S., & Mohapatra, H. (2024). Machine learning for brain-stroke prediction: comparative analysis and evaluation. Multimedia tools and applications, 1–33. https://doi.org/10.1007/s11042-024-20057-6
- [14] Kim, H., Kim, Y. J., Yang, K., & Thottan, M. (2011). Cloud-based demand response for smart grid: architecture and distributed algorithms. 2011 IEEE international conference on smart grid communications, smartgridcomm 2011 (pp. 398–403). IEEE. https://doi.org/10.1109/SmartGridComm.2011.6102355
- [15] Mohsenian-Rad, A.-H., & Leon-Garcia, A. (2010). Coordination of cloud computing and smart power grids. 2010 first ieee international conference on smart grid communications (pp. 368–372). IEEE. https://doi.org/10.1109/smartgrid.2010.5622069
- [16] Fayyaz, S., & Nazir, M. M. (2012). Handling security issues for smart grid applications using cloud computing framework. Journal of emerging trends in computing and information sciences, 3(2), 285–287. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=86f178580db14611701f34672bf9bbb269d4ad6e
- [17] Mishra, S. R., Mishra, S. R., Mohapatra, H., & Gourisaria, M. K. (2024). A robust approach for deepfake detection using SWIN transformer. https://doi.org/10.21203/rs.3.rs-4672886/v1
- [18] Mohapatra, H., Kolhar, M., & Dalai, A. K. (2024). Efficient energy management by using sjf scheduling in wireless sensor network. International conference on advances in distributed computing and machine learning (pp. 211–221). Springer. https://doi.org/10.1007/978-981-97-1841-2_15
- [19] Bernardo, V., Curado, M., Staub, T., & Braun, T. (2011). Towards energy consumption measurement in a cloud computing wireless testbed. 2011 first international symposium on network cloud computing and applications (pp. 91–98). IEEE. https://doi.org/10.1109/NCCA.2011.22
- [20] Bjelica, M. Z., Mrazovac, B., Vojnovic, V., & Papp, I. (2012). Gateway device for energy-saving cloud-enabled smart homes. 2012 proceedings of the 35th international convention MIPRO (pp. 865–868). IEEE. https://ieeexplore.ieee.org/abstract/document/6240764
- [21] Hong, I., Byun, J., & Park, S. (2012). Cloud computing-based building energy management system with zigbee sensor network. 2012 sixth international conference on innovative mobile and internet services in ubiquitous computing (pp. 547–551). IEEE. https://doi.org/10.1109/IMIS.2012.20
- [22] Johnson, E., Seyi-Lande, O. B., Adeleke, G. S., Amajuoyi, C. P., & Simpson, B. D. (2024). Developing scalable data solutions for small and medium enterprises: challenges and best practices. International journal of management & entrepreneurship research, 6(6), 1910–1935. https://doi.org/10.51594/ijmer.v6i6.1206
- [23] Bhadani, U. (2024). Pillars of power system and security of smart grid. International journal of innovative research in science engineering and technology, 13(7), 13888–13902. https://www.researchgate.net
- [24] Boopathy, P., Liyanage, M., Deepa, N., Velavali, M., Reddy, S., Maddikunta, P. K. R., … & Pham, Q. V. (2024). Deep learning for intelligent demand response and smart grids: A comprehensive survey. Computer science review, 51, 100617. https://doi.org/10.1016/j.cosrev.2024.100617
- [25] Vieira, C. C. A., Bittencourt, L. F., Genez, T. A. L., Peixoto, M. L. M., & Madeira, E. R. M. (2024). RAaaS: Resource allocation as a service in multiple cloud providers. Journal of network and computer applications, 221, 103790. https://doi.org/10.1016/j.jnca.2023.103790
- [26] Agnew, D., Boamah, S., Bretas, A., & McNair, J. (2024). Network security challenges and countermeasures for software-defined smart grids: A survey. Smart cities, 7(4), 2131–2181. https://doi.org/10.3390/smartcities7040085
- [27] Knapp, E. D. (2024). Industrial network security: securing critical infrastructure networks for smart grid, SCADA, and other industrial control systems. Elsevier. https://doi.org/10.1016/C2022-0-02315-1
- [28] Eusufzai, F., Bobby, A. N., Shabnam, F., & Sabuj, S. R. (2024). Personal internet of things networks: An overview of 3GPP architecture, applications, key technologies, and future trends. International journal of intelligent networks, 5, 77–91. https://doi.org/10.1016/j.ijin.2024.02.001
- [29] Borra, P. (2024). Comparison and analysis of leading cloud service providers (AWS, Azure and GCP). International journal of advanced research in engineering and technology (IJARET), 15(3), 266–278. https://www.researchgate.net
- [30] Mohammed, A. J., Abdulrahman, L. M., Abdulkareem, N. M., & Salim, B. W. (2024). Web technology and cloud computing security based machine learning algorithms for detect DDOS attacks. Journal of information technology and informatics, 3(1). https://scholar.google.com
- [31] Gorantla, V. A. K., Gude, V., Sriramulugari, S. K., Yuvaraj, N., & Yadav, P. (2024). Utilizing hybrid cloud strategies to enhance data storage and security in e-commerce applications. 2024 2nd international conference on disruptive technologies, ICDT 2024 (pp. 494–499). IEEE. https://doi.org/10.1109/ICDT61202.2024.10489749
- [32] Mahajan, H., & Reddy, K. T. V. (2024). Secure gene profile data processing using lightweight cryptography and blockchain. Cluster computing, 27(3), 2785–2803. DOI:10.1007/s10586-023-04123-6
- [33] El Mestari, S. Z., Lenzini, G., & Demirci, H. (2024). Preserving data privacy in machine learning systems. Computers and security, 137, 103605. https://doi.org/10.1016/j.cose.2023.103605
- [34] Abba Ari, A. A., Ngangmo, O. K., Titouna, C., Thiare, O., Kolyang, Mohamadou, A., & Gueroui, A. M. (2024). Enabling privacy and security in Cloud of Things: Architecture, applications, security & privacy challenges. Applied computing and informatics, 20(1–2), 119–141. https://doi.org/10.1016/j.aci.2019.11.005
- [35] Sundarasen, S., Ibrahim, I., Alsmady, A. A., & Krishna, T. (2024). Corruption’s crossroads: exploring firm performance and auditors’ role in emerging markets. Economies, 12(9), 239. https://doi.org/10.3390/economies12090239
- [36] Liu, Z., Wu, Q., Shen, X., Tan, J., & Zhang, X. (2024). Post-disaster robust restoration scheme for distribution network considering rerouting process of cyber system with 5G. IEEE transactions on smart grid, 15(5), 4478–4491. https://doi.org/10.1109/TSG.2024.3385377
- [37] Hasan, M. K., Weichen, Z., Safie, N., Ahmed, F. R. A., & Ghazal, T. M. (2024). A survey on key agreement and authentication protocol for internet of things application. IEEE access, 12, 61642–61666. https://doi.org/10.1109/ACCESS.2024.3393567
- [38] Aouedi, O., Vu, T. H., Sacco, A., Nguyen, D. C., Piamrat, K., Marchetto, G., & Pham, Q. V. (2024). A survey on intelligent internet of things: applications, security, privacy, and future directions. IEEE communications surveys and tutorials. https://doi.org/10.1109/COMST.2024.3430368