AI-Driven IoT Solutions for Urban Pollution Monitoring

Authors

DOI:

https://doi.org/10.22105/siot.v1i3.217

Keywords:

Artificial intelligence, Internet of things, Pollution monitoring, Urban environment, Data analysis, Predictive modeling

Abstract

Urban pollution is a growing problem that affects public health, the quality of the environment, and living conditions in cities. Conventional methods of monitoring pollution often do not provide real-time data or predictive insights, which hampers effective responses. The integration of Artificial Intelligence (AI) with the Internet of Things (IoTs) presents an innovative solution for monitoring urban pollution through cutting-edge sensors, data analysis, and forecasting techniques. This paper investigates the structure, application, and success of AI-enhanced IoTs systems for real-time pollution monitoring in urban environments. Results indicate that these systems facilitate proactive management of pollution, enhance urban planning, and increase public engagement, making them vital resources for tackling pollution issues in cities around the globe.

References

Meo, S. A., Salih, M. A., Alkhalifah, J. M., Alsomali, A. H., & Almushawah, A. A. (2024). Effect of air pollutants particulate matter PM(2.5), PM(10), carbon monoxide (CO), nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), and ozone (O(3)) on fractional exhaled nitric oxide (FeNO). Pakistan journal of medical sciences, 40(8), 1719–1723. https://doi.org/10.12669/pjms.40.8.9630

Meo, S. A., Salih, M. A., Al-Hussain, F., Alkhalifah, J. M., Meo, A. S., & Akram, A. (2024). Environmental pollutants PM2.5, PM10, carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) impair human cognitive functions. European review for medical and pharmacological sciences, 28(2), 789–796. https://doi.org/10.26355/eurrev_202401_35079

Felici-Castell, S., Segura-Garcia, J., Perez-Solano, J. J., Fayos-Jordan, R., Soriano-Asensi, A., & Alcaraz-Calero, J. M. (2023). AI-IoT low-cost pollution-monitoring sensor network to assist citizens with respiratory problems. Sensors, 23(23), 9585. https://doi.org/10.3390/s23239585

Popescu, S. M., Mansoor, S., Wani, O. A., Kumar, S. S., Sharma, V., Sharma, A., Arya, V. M, Kirkham, M. B., Hou, D., Bolan, N., & Chung, Y. S. (2024). Artificial intelligence and IoT driven technologies for environmental pollution monitoring and management. Frontiers in environmental science, 12, 1336088. https://doi.org/10.3389/fenvs.2024.1336088

Mohapatra, H. (2021). Smart city with wireless sensor network: networking of smart city applications. Kindle.

Huynh, T. L., Fakprapai, S., & Nguyen, T. K. O. (2020). Air quality monitoring with focus on wireless sensor application and data management. In TORUS 3-toward an open resource using services: cloud computing for environmental data (pp. 17–40). Wiley online library. https://doi.org/10.1002/9781119720522.ch2

Shukla, P. K., Singh, A., Shaikh, N., Sharma, A., & Singh, R. (2023). Air pollution monitoring by indulging AI and iot for environmental protection. 2023 3rd international conference on pervasive computing and social networking (ICPCSN) (pp. 1161–1165). IEEE. https://doi.org/10.1109/ICPCSN58827.2023.00197

Alahi, M. E. E., Sukkuea, A., Tina, F. W., Nag, A., Kurdthongmee, W., Suwannarat, K., & Mukhopadhyay, S. C. (2023). Integration of IoT-enabled technologies and artificial intelligence (AI) for smart city scenario: recent advancements and future trends. Sensors, 23(11), 5206. https://doi.org/10.3390/s23115206

Arabelli, R., Boddepalli, E., Buradkar, M., Goriparti, N. V. S., & Chakravarthi, M. K. (2024). IoT-enabled environmental monitoring system using AI. 2024 international conference on advances in computing, communication and applied informatics (ACCAI) (pp. 1–6). IEEE. https://doi.org/10.1109/ACCAI61061.2024.10602131

Karnati, H. (2023). IoT-based air quality monitoring system with machine learning for accurate and real-time data analysis. ArXiv preprint arxiv:2307.00580. https://doi.org/10.48550/arXiv.2307.00580

Yu, T., Wang, W., Ciren, P., & Sun, R. (2018). An assessment of air-quality monitoring station locations based on satellite observations. International journal of remote sensing, 39, 1–16. http://dx.doi.org/10.1080/01431161.2018.1460505

Katie, B. (2024). Internet of things (IoT) for environmental monitoring. International journal of computing and engineering, 6(3), 29–42. http://dx.doi.org/10.47941/ijce.2139

Mohapatra, H. & Rath, A. K. (2021). Designing of fault-tolerant models for wireless sensor network-assisted smart city applications. In intelligent technologies: concepts, applications, and future directions (pp. 25-43). Singapore: springer nature singapore. https://doi.org/10.1007/978-981-99-1482-1_2

Gomathi, G., Emilyn, J. J., Thamburaj, A. S., & D, V. K. (2022). Real time air pollution prediction in urban cities using deep learning algorithms and iot. 2022 7th international conference on communication and electronics systems (ICCES) (pp. 340–343). IEEE. https://doi.org/10.1109/ICCES54183.2022.9835991

Kataria, A., & Puri, V. (2022). AI-and IoT-based hybrid model for air quality prediction in a smart city with network assistance. IET networks, 11(6), 221–233. https://doi.org/10.1049/ntw2.12053

Bobulski, J., Szymoniak, S., & Pasternak, K. (2024). An IoT system for air pollution monitoring with safe data transmission. Sensors, 24(2), 445. https://doi.org/10.3390/s24020445

Hudson-Smith, A., Wilson, D., Gray, S., & Dawkins, O. (2021). Urban IoT: Advances, challenges, and opportunities for mass data collection, analysis, and visualization. In urban informatics (pp. 701–719). Springer, singapore. http://dx.doi.org/10.1007/978-981-15-8983-6_38

Rafiq, I., Mahmood, A., Razzaq, S., Jafri, S. H. M., & Aziz, I. (2023). IoT applications and challenges in smart cities and services. The journal of engineering, 2023(4), e12262. https://doi.org/10.1049/tje2.12262

Mukherjee, M., Adhikary, I., Mondal, S., Mondal, A. K., Pundir, M., & Chowdary, V. (2017). A vision of iot: applications, challenges, and opportunities with dehradun perspective. Proceeding of international conference on intelligent communication, control and devices (pp. 553–559). Singapore: springer singapore. https://doi.org/10.1007/978-981-10-1708-7_63

Published

2024-11-20

How to Cite

Binu *, C. A. (2024). AI-Driven IoT Solutions for Urban Pollution Monitoring. Smart Internet of Things, 1(3), 226-243. https://doi.org/10.22105/siot.v1i3.217

Similar Articles

1-10 of 25

You may also start an advanced similarity search for this article.