
 Corresponding Author: 21052029@kiit.ac.in

 https://doi.org/10.22105/siot.v1i1.34

Licensee System Analytics. This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).

1|Introduction

Cloud computing technology is growing rapidly. Cloud computing is a technology that utilizes the internet

and central isolated servers to sustain data and applications. Cloud computing provides a flexible way to

retain data and files. Cloud computing involves virtualization, distributed computing and web services. Cloud

computing aims to provide maximum services at minimum cost, enhance response time, and provide better

performance. With advancements in technologies like the internet, today, millions of computing devices

connect to the cloud and access data at any given time, and these devices get a response from a cloud in a

matter of seconds [1]. Fig. 1 shows cloud computing architecture.

 Smart Internet of Things

www.siot.reapress.com

 Smart. Internet. Things. Vol. 1, No. 1 (2024) 1–16.

Paper Type: Original Article

Optimizing Cloud Performance: A Comprehensive

Study of Load Balancing Strategies and Algorithms

Ayush Singh1, Aman Kumar Sahu1, Nabeel Anwar Siddiqui1, Siddharth Singh1,*

1 School of Computer Science Engineering, KIIT University, Bhubaneswar, India; 21053209@kiit.ac.in; 2105601@kiit.ac.in;

2105975@kiit.ac.in; 21052029@kiit.ac.in.

Citation:

Received: 3 February 2024

Revised: 11 April 2024

Accepted: 19 June 2024

Singh, A., Sahu, A. K., Siddiqui, N. A., & Singh, S. (2024). Optimizing

cloud performance: a comprehensive study of load balancing strategies

and algorithms. Smart internet of things, 1 (1), 1-16.

Abstract

Cloud computing is a big system of interconnected servers that store data and run programs over the internet. As

this technology grows, ensuring it runs smoothly and efficiently is important. One way to do this is through load

balancing, where tasks and data are distributed evenly across the servers to avoid overloading any of them. However,

achieving effective load balancing can be challenging due to factors like servers' geographical spread and differences

in capabilities. Our study delved into various load balancing strategies used in cloud computing, including Min-Min,

Max-Min, Least Connection, Source Hash, Least Bandwidth, and Round Robin. While these strategies help optimize

performance, they also come with their own set of limitations and challenges. By examining the pros and cons of

different methods, our study gives us a better understanding of how load balancing works in cloud computing right

now. It also helps us see how we can improve things in the future. We want to keep improving cloud computing so

it can handle all the tasks it needs to in today's digital world. Our research helps us learn more about cloud computing

and how we can make it stronger and more efficient in the years to come.

Keywords: Cloud Computing, Load Balancing, Scheduling Algorithms

mailto:dastam66@gmail.com
http://www.siot.reapress.com/

Optimizing cloud performance: a comprehensive study of load balancing strategies and ...

2

Fig. 1 Cloud computing architecture.

Cloud computing is becoming quite popular; hence, there has been a significant increase in the amount of

processing carried out in the cloud, and the load on the cloud is increasing [2]. In a cloud computing

environment, there are multiple types of loads: CPU load, Network load, Memory load, Storage load, etc.,

which may affect the efficiency and availability of resources in that environment. To overcome this problem,

various load balancing techniques are devised, which are used to distribute incoming network traffic and

computational tasks across multiple servers or resources in a cloud environment with the primary goals of

optimizing resource utilization by distributing loads across different servers, improving performance by

preventing single servers from becoming overloaded, enhance scalability and availability by allowing the

cloud to scale by adding or removing servers depending on workload demand and also mitigate downtime

and failures [3]. Fig. 2 shows load balancing in cloud computing.

Fig. 2 Load balancing in cloud computing.

Load-balancing concepts encounter multiple challenges due to various physical and logical issues that can

impact their effectiveness [4]. Challenges associated with load balancing are outlined in Table 1.

 Singh et al.|Smart. Internet. Things. 1(1) (2024) 1-16

3

Table 1. Issues associated with load balancing.

The paper is structured as follows. Section 2 provides a literature review of load-balancing algorithms. Section

3 discusses the challenges associated with load balancing, while Section 4 highlights the limitations of various

load-balancing algorithms. Section 5 explores potential improvements in these algorithms to enhance

efficiency and fault tolerance. Finally, Section 6 summarizes the key findings, future research directions, and

references.

2|Literature Review

There are two load-balancing strategies: 1) static load-balancing algorithms, and 2) dynamic load-balancing

algorithms [2]. A static load balancing algorithm does not consider a node's previous state or behaviour while

distributing the load. On the other hand, a dynamic load balancing algorithm checks the prior state of a node

while distributing the load, such as CPU load, amount of memory used, delay or network load, and so on. We

can go with static algorithms if the systems have low load variations; otherwise, dynamic algorithms are good

[11]. Load balancing techniques classification are outlined in Table 2.

Table 2. Load balancing techniques classification.

Challenges Description

Geographical distribution [5] Cloud data centres are geographically distributed, but load balancing may
overlook communication delays and resource allocation.

Virtual machine migration [6] Multiple Virtual Machines (VMs) on the same physical machine can overload
due to the distinct structures of these VMs.

Algorithm complexity [7] Load balancing algorithms should be straightforward and succinct to uphold
cloud efficiency.

Heterogeneous nodes [8] Different user needs require diverse nodes, impacting load-balancing choices.

Single point of failure [9] Load balancing algorithms run on a central node, risking complete computing
failure if the central node malfunctions.

Load balancer scalability [10] The response time of load balancing is influenced by factors such as
computing power, topology, and storage, highlighting the importance of
scalability.

Static load balancing [3]
fixed rules do not consider the
current state or previous
knowledge of resources such
as storage, preprocessing, etc.

Optimal load balancing
Collect information for a load balancer to
allocate tasks to the resources at the
optimum time

Examples of Static techniques:
min-min, max-min, round robin,
shortest job first, opportunists
load balancing, appropriate load
balancing, heuristic load
balancing, IP Hash Sub-optimal load balancing

Load Balancer cannot make optional
decisions, so it comes up with a suboptimal
solution.

Dynamic load balancing [3]
Making decisions based on the
system's current status. In
addition to task transfer from
overloaded machine to
underloaded machine.

Distributed load balancing
All nodes participate in task scheduling,
load distribution, resource allocation, and
distributing and redistributing tasks
effectively.

Examples of dynamic
techniques
cooperative load balancing, non-
cooperative load balancing,
centralized load balancing,
sesmi-distributed load balancing,
least connection Centralized load balancing

Only a Single node is responsible for load
distribution and decision-making.

Optimizing cloud performance: a comprehensive study of load balancing strategies and ...

4

2.1|Load Balancing Algorithms

2.1.1|Min-Min scheduling algorithm

The Min-Min algorithm is a simple cloud scheduling algorithm and is the basis of contemporary cloud

scheduling algorithms. The Min-Min algorithm finds the resource which can perform the given tasks in the

least time and execute them in that resource [5]. The algorithm Min-Min is adapted from [5] is presented

below:

Algorithm 1. Min-Min.

Step 1. For all submitted tasks in the task set Ti.

Step 2. For all resources Ri.

Step 3. Compute Ctij = Etij + rtij.

Step 4. Do while set is not empty.

Step 5. Find task Tk that gives minimum execution time.

Step 6. Assign task Tk to resource Rj that gives minimum expected completion time.

Step 7. Delete task Tk from the set.

Step 8. Update ready time rtj for the selected Resources j.

Step 9. Update Ctij for all Ti .

Step 10. End do.

Fig. 3 shows the flow chart of the Min-Min algorithm.

Fig. 3. Min-Min algorithm flow-chart.

 Singh et al.|Smart. Internet. Things. 1(1) (2024) 1-16

5

2.1.2|Max-Min scheduling algorithm

This algorithm is the same as the Min-Min algorithm. First, we select the machine that can perform various

tasks in minimum time. From the selected tasks, we choose the task that will execute in maximum time and

execute that. Then, we remove that task from the set [12]. The algorithm Max-Min is adapted from [6] is

presented below:

Algorithm 2. Max-Min.

For all task ti in meta-task Mv (in an arbitrary order) do

 for all machines mj (in a fixed arbitrary order) do

 ctij = etij + rj

 end for

 carry out some processing

 while all task in Mv are mapped do

 for each task ti in Mv find its earliest completion time and the machine that obtain it do

 find the task ti with maximum earliest completion time

 end for

 assign the task ti to the machine mi that gives the earliest completion time

. delete the task tk from Mv

 update rj

 update ctij for all ti belong Mv

 end while

 end for.

Fig. 4 shows the flow chart of the Max-Min algorithm.

Optimizing cloud performance: a comprehensive study of load balancing strategies and ...

6

Fig. 4. Max-Min algorithm flow chart.

2.1.3|Least connection algorithm

As proposed by [13], the Least Connection algorithm effectively facilitates dynamic scheduling and routing

of incoming visitors to the server with the fewest active connections, as demonstrated in Fig. 5. This approach

ensures fair load distribution by continuously monitoring and selecting the least-loaded server based on active

connections. It is particularly beneficial in high-traffic scenarios, as emphasized in [8], as it optimizes resource

utilization and system performance. The algorithm performs exceptionally well in environments with longer

session requirements, such as databases (e.g., MariaDB or SQL) managing high transaction rates. However,

alternative load balancing strategies, as recommended in [14], may be more suitable for short-lived

connections like HTTP.

Fig .5. Least connection algorithm.

 Singh et al.|Smart. Internet. Things. 1(1) (2024) 1-16

7

Algorithm 3 below, known as the Least Connection Algorithm adapted from [9], dynamically selects the server

with the fewest active connections to efficiently manage incoming requests in distributed systems.

Algorithm 3. Least Connection algorithm.

function least_conn_algorithm(servers):

 min_conn = infinity

 selected_server = null

 // Loop through each server in the server list

 for server in servers:

 // If the server's connections are less than min_conn

 if server.connections < min_conn:

 // Update min_conn and selected_server

 min_conn = server.connections

 selected_server = server

 // Return the server with the least connections

 return selected_serve.

Explanation

The least connection algorithm examines a list of servers and identifies the server with the fewest active

connections. It initializes the minimum connections variable to a very large value and the selected server

variable to null. Then, it iterates through the servers, comparing the number of connections on each server

with the current minimum [15]. If a server has fewer connections, it updates the minimum connections

variable and selects that server. Ultimately, it returns the server with the least connections. This approach

ensures that incoming requests are distributed to the server with the lightest load, balancing the overall load

across the servers. The key variables used in the algorithm are the server list, the minimum connections, and

the selected server, while the primary function is responsible for iterating through the servers and identifying

the server with the least connections [16].

2.1.4|Source hash algorithm

As proposed in [17], the source hashing algorithm determines server selection in this load-balancing approach.

Utilizing the source IP address as the hash key in the hash table, as explained in [10], ensures consistent

routing of a user's request to the server that previously handled their request. Illustrated in Fig. 6, this sincere

load-balancing algorithm provides continuity in routing for the same user based on their source IP address.

This algorithm is advantageous for applications requiring consistent routing for the same user. However,

challenges, as noted in [17], arise due to dynamic IP addresses provided by ISPs, impacting the maintenance

of this server-specific routing approach.

Optimizing cloud performance: a comprehensive study of load balancing strategies and ...

8

Fig. 6. Source hash algorithm.

Algorithm 4 given below, referred to as the Source Hash Load Balancing algorithm adapted from [11],

dynamically selects the server based on the hash value generated from the source address to manage incoming

requests efficiently.

Algorithm 4. IP Hash algorithm.

Function source_hash_load_balancing(servers, source_address):

 Hash_value = hash_function(source_address) // Use a hash function to generate a hash value

 Hash_int = convert_hex_to_int(hash_value) // Convert hexadecimal hash value to integer

 Selected_server = null

 // Determine the index of the selected server based on the hash value

 Selected_server_index = hash_int % length(servers)

 // Return the selected server

Return servers[selected_server_index].

Explanation

The Source Hash Load Balancing algorithm is designed to distribute incoming requests among a group of

servers based on the hash value generated from the source address. It uses a hash function to convert the

source address into a hash value, which is then transformed into an integer. This integer is used to determine

the index of the selected server by taking the modulo of the server list length. The algorithm returns the server

associated with the calculated index, ensuring that requests from the same source address consistently go to

the same server [18]. The key variables include the server list, source address, hash value, hash integer, and

the selected server. The algorithm contributes to load balancing by providing a stable mapping of source

addresses to servers, promoting efficient resource utilization.

2.1.5|Least bandwidth

The Least Bandwidth algorithm, referenced in [8], dynamically prioritizes servers based on Mbps capacity,

directing requests to the server with the least network traffic (Fig. 7). The details in [12] explain how it adapts

to varying network bandwidths and changing conditions. By monitoring network traffic and considering

weight-based variations, it intelligently selects the least-loaded server, optimizing resource utilization and

system performance for diverse scenarios [19]. This approach provides an efficient and adaptable solution for

load balancing in environments with fluctuating network conditions, aligning with modern strategies, as

outlined in [8].

 Singh et al.|Smart. Internet. Things. 1(1) (2024) 1-16

9

Fig. 7. Least Bandwidth algorithm.

Algorithm 5, known as the Least Bandwidth Algorithm and adapted from [12], dynamically prioritizes servers

based on their Mbps capacity to manage incoming requests in distributed systems efficiently.

Algorithm 5. Least Bandwidth algorithm.

Function least_bandwidth_algorithm(servers):

 min_bandwidth = infinity

 selected_server = null

 // Loop through each server in the server list

 for server in servers:

 // If the server's Mbps capacity is less than min_bandwidth

 if server.mbps_capacity < min_bandwidth:

 // Update min_bandwidth and selected_server

 min_bandwidth = server.mbps_capacity

 selected_server = server

 // Return the server with the least Mbps capacity

return selected_server.

Explanation

The Least Bandwidth algorithm prioritizes servers by evaluating their Mbps capacity. It initializes the

minimum bandwidth variable to a very large value and the selected server variable to null. Then, it iterates

through the servers, comparing the Mbps capacity of each server with the current minimum. If a server has

a lower Mbps capacity, it updates the minimum bandwidth variable and selects that server. Ultimately, it

returns the server with the least Mbps capacity. This strategy efficiently distributes incoming requests to

servers with lower network traffic, optimizing resource utilization and system performance. The key variables

are the server list, minimum bandwidth, and the selected server, while the primary function iterates through

servers to identify the one with the least Mbps capacity [20].

2.1.6 |Round Robin scheduling algorithm

The round-robin algorithm is one of the oldest, simplest, fairest and most widely used scheduling algorithms,

designed especially for time-sharing systems. In the RR algorithm, the jobs share the CPU time by allocating

a slice of time; usually between 10 and 100 ms for each job, called Quantum Time (QT) [13]. All runnable

processes are kept in a circular queue. The CPU scheduler goes around this queue, allocating the CPU to each

process for a time interval of one quantum. New processes are added to the tail of the queue [13], [14].

Optimizing cloud performance: a comprehensive study of load balancing strategies and ...

10

 Algorithm 6 shows the pseudocode of the RR algorithm as described in [13]. Table 3 shows an analysis of

various load-balancing algorithms [21].

Algorithm 6. The Pseudocode of the RR algorithm in CPU scheduling.

Step 1. Keep the ready queue as a FIFO queue of tasks.

Step 2. New tasks added to the tail of the queue will be selected, set a timer to interrupt after one time slot,

and dispatch the tasks.

Step 3. The task may have executed less than one time quantum. In this case:

I. The task itself will release the resources voluntarily.

II. The scheduler will then proceed to the next task in the ready queue.

Step 4. Otherwise, if the running task is longer than one time quantum, the timer will go off and will cause

an interruption to the OS.

Table 3. Load Balancing algorithms analysis.

3|Challenges Associated with Load Balancing

Cloud computing depends on the proper utilization of resources to fulfil customer requirements. Load

balancing techniques are just responsible for this, but there are various challenges associated with load

balancing, which are mentioned below [22]:

Algorithm Overhead Advantages Disadvantages Use Cases

Min-Min [3] Medium
overhead

Efficiently assigns tasks
to resources with the
least execution time

Simple and easy to
implement

May lead to suboptimal
makespan due to
resource imbalance

Limited dynamic
workload handling

Applications with
predictable and stable
workloads

Max-Min [3] Medium
overhead

Prioritizes tasks on the
most loaded resources
Fair distribution of
workload

Similar limitations as
Min-Min
May lead to suboptimal
makespan due to
resource imbalance

Similar to Min-Min,
suitable for static
workloads

Least connection
[3]

 Dynamically selects the
server with the fewest
active connections

Effective in high-traffic
scenarios

May lead to server
overload in certain
scenarios
Performance may
degrade with short-
lived connections

High-traffic applications,
databases with high
transaction rates

Source Hash [3] Low to
moderate

Consistent routing for
the same user based on
source IP address

Efficient for long-lived
connections

Vulnerable to DDoS
attacks and IP spoofing

Challenges with
dynamic IP addresses

Applications requiring
consistent routing for
the same users

Least Bandwidth
[3]

Low to
moderate

Prioritizes servers with
the least network traffic
Adaptive to changing
network conditions

Risk of bandwidth
constraints leading to
service interruptions

Dependency on
network speed

Environments with
fluctuating network
conditions

Round Robin [3] No
overhead

Simple and fair
distribution of tasks

Suitable for time-sharing
systems

Assumes servers have
equivalent loads,
leading to resource
imbalance

Limited scalability

Basic load balancing in
simple environments

 Singh et al.|Smart. Internet. Things. 1(1) (2024) 1-16

11

3.1|Geographical Distribution of Nodes

Data centres are strategically positioned according to the geographical characteristics of an area or place to

facilitate computational tasks. In this configuration, dispersed nodes are highly valued as an integrated system

for efficiently executing user-requested operations.

3.2|Single Point of Failure

Load-balancing decisions are centralized and managed by the master node using various dynamic load-

balancing algorithms, resulting in a non-distributed setup. If the master node experiences a failure, it disrupts

the entire computing domain.

3.3|Virtual Machine Migration

Virtualization involves consolidating multiple VMs onto a single physical system. Each deployed VM exhibits

unique behaviour with diverse configurations. In cases where the physical system becomes overwhelmed,

certain VMs may need to be relocated to a remote location using Cloudlet migration techniques.

3.4|Algorithm Complexity

Algorithm design should prioritize simplicity and ease of implementation. Increased algorithm complexity

corresponds to decreased performance and efficiency within the cloud environment.

3.5|Load Balancer Scalability

Cloud services offer users the flexibility to access services at any time or location by swiftly scaling resources

up or down based on demand. An effective load-balancing algorithm should dynamically adjust to rapid

changes in demand related to network topology, power, etc., to optimize system performance.

4|Limitations of Scheduling Algorithms

4.1|Limitations of Min-Min Scheduling Algorithm

While the Min-Min algorithm offers simplicity and ease of implementation, it comes with some limitations

that can hinder its effectiveness in cloud computing environments [23]. Here are some key problems

associated with Min-Min:

4.1.1|Suboptimal makespan

Min-Min focuses on assigning tasks to resources with the minimum execution time for each individual task.

This might lead to some resources overloading while others remain idle. This can result in a suboptimal overall

completion time (makespan) for all tasks [16].

4.1.2|Limited dynamic workload handling

Min-Min is designed for static workloads, where the number of tasks and resource capabilities remain

constant. However, cloud environments are dynamic, with workloads fluctuating. This can lead to inefficient

load balancing when workloads change [17].

4.1.3|Resource heterogeneity assumption

Min-Min typically assumes homogeneous resources (all resources have the same capabilities). In reality, cloud

environments consist of heterogeneous resources (e.g., CPU, memory, storage) with varying capacities. This

can lead to suboptimal task allocation if resource heterogeneity is not considered [17].

Optimizing cloud performance: a comprehensive study of load balancing strategies and ...

12

4.2|Limitations of Max-Min Scheduling Algorithm

4.2.1|Suboptimal makespan (like Min-Min)

Like Min-Min, Max-Min prioritizes minimizing the workload on the most loaded resource. While this might

seem beneficial, it can lead to situations where other resources remain underutilized. This can result in a

suboptimal overall completion time (makespan) for all tasks [24].

4.2.2| Limited dynamic workload handling (like Min-Min)

Max-Min, like Min-Min, is designed for static workloads. When workloads fluctuate in dynamic cloud

environments, Max-Min's efficiency can decrease, potentially leading to imbalanced load distribution [17].

4.2.3|Resource heterogeneity assumption (like Min-Min)

Max-Min typically assumes homogeneous resources (all resources have the same capabilities). In reality, cloud

environments consist of heterogeneous resources (e.g., CPU, memory, storage) with varying capacities. This

can lead to suboptimal task allocation if resource heterogeneity is not considered [17].

4.3|Limitations of Source Hash Algorithm

4.3.1|Distributed denial of service (DDoS) attacks (privacy concerns)

Attackers could potentially manipulate source addresses to target specific servers, leading to uneven loads or

overloading a particular server [18].

4.3.2|Hash Polarization

Uneven distribution of hash values can lead to certain servers consistently handling a disproportionate share

of the load, like the Traffic Polarization Effect [19] in networking, in which certain traffic or congestion gets

collected in certain routers or servers.

4.3.3|Dynamic IP addresses causing IP spoofing

Dynamic IP addresses, especially those assigned by Internet Service Providers (ISPs), introduce the risk of IP

spoofing in systems that rely on IP-based authentication or verification. Attackers may exploit the dynamic

nature of IP assignments to impersonate legitimate users or devices by forging their source IP addresses [18].

4.4|Limitations of Least Bandwidth Algorithm

4.4.1|Bandwidth limit exceeded (509 Error)

Choosing routes with the least traffic may lead to bandwidth constraints, suspending the site due to the

Bandwidth Limit Exceeded 509 error [21]. Users experience service disruption, and the site becomes

temporarily unavailable.

4.4.2|Dependency on Network Speed

Internet or connection speed heavily depends on the data transfer rate, affecting the user experience. Slower

network performance in low-bandwidth systems negatively impacts data transfer rates [20].

4.4.3|Bandwidth consumption management

The inability to manage bandwidth consumption may lead to unpredictable spikes, potentially causing service

interruptions. Difficulty in maintaining a consistent and reliable level of service [20].

4.5|Limitations of Round Robin

The biggest limitation of using the round-robin algorithm in load balancing is that the algorithm assumes that

servers are in such a manner that they can handle equivalent loads. If certain servers have more CPU, RAM,

or other specifications, the algorithm has no way to distribute more requests to these servers. As a result,

 Singh et al.|Smart. Internet. Things. 1(1) (2024) 1-16

13

servers with less capacity may overload easily and fail; meanwhile, servers with higher capacity may remain

idle and not be utilized completely.

To overcome this, the weighted round-robin load balancing algorithm can be introduced to allow site

administrators to assign weights to each server based on criteria like traffic-handling capacity. Servers with

higher weights receive a higher proportion of client requests.

For a simplified example, assume that a company has a cluster of three servers:

I. Server A can handle 30 requests per second, on average.

II. Server B can handle 20 requests per second, on average.

III. Server C can handle 10 requests per second, on average.

Next, assume that the load balancer receives 6 requests.

I. 3 requests are sent to Server A.

II. 2 requests are sent to Server B.

III. 1 request is sent to Server C.

In this manner, the weighted round-robin algorithm distributes the load according to each server's capacity

and solves the issue our simple round-robin had [21].

5|Proposed Work

Considering the advantages and disadvantages of each load-balancing algorithm, the proposed work aims to

address the limitations while leveraging the strengths to enhance overall performance and efficiency in diverse

cloud computing environments.

5.1|Optimization of Min-Min and Max-Min Algorithms [23]

I. Develop enhanced versions of Min-Min and Max-Min algorithms that incorporate dynamic workload

handling mechanisms to address the limitations related to suboptimal makespan and limited scalability [22].

II. Introduce adaptive task allocation strategies to balance resource utilization effectively, particularly in

environments with fluctuating workloads [22].

5.2|Improvement of Least Connection Algorithm

I. Implement algorithms or mechanisms to mitigate the risk of server overload in high-traffic scenarios while

maintaining performance consistency [23].

II. Investigate methods to improve the performance of the Least Connection algorithm in handling short-lived

connections, potentially through optimization techniques or adaptive adjustments [23].

5.3|Enhancement of Source Hash Algorithm

I. Enhance security measures to address DDoS attacks and IP spoofing vulnerabilities, such as integrating

robust authentication and access control mechanisms [24].

II. Explore strategies to mitigate challenges associated with dynamic IP addresses, potentially through adaptive

routing mechanisms or dynamic IP management solutions [24].

5.4|Refinement of Least Bandwidth Algorithm

I. Develop algorithms or approaches to proactively manage and prevent bandwidth constraints, including

dynamic bandwidth allocation strategies and network traffic optimization techniques.

II. Investigate methods to reduce dependency on network speed and enhance adaptability to varying network

conditions through intelligent routing and protocol optimizations.

Optimizing cloud performance: a comprehensive study of load balancing strategies and ...

14

5.5|Scalability and Adaptability of Round Robin Algorithm

I. Design enhancements to improve the scalability of the Round Robin algorithm, allowing it to handle larger

and more complex environments effectively.

II. Introduce dynamic load balancing policies or mechanisms to address resource imbalances and optimize task

distribution across servers with varying capacities.

5.6|Performance Evaluation and Comparative Analysis

I. Conduct comprehensive performance evaluations and comparative analyses of the proposed enhancements

against traditional algorithms.

II. Utilize real-world workload scenarios and benchmarks to assess the effectiveness and efficiency of the

proposed improvements in diverse cloud computing environments.

These proposed enhancements and evaluations aim to advance the state-of-the-art load balancing algorithms,

address existing limitations, and pave the way for more efficient and adaptive load management in cloud

computing infrastructures.

6. Conclusion

In conclusion, this paper has comprehensively studied various load-balancing strategies and algorithms in

cloud computing environments. Through analyzing the strengths and weaknesses of prominent algorithms

such as Min-Min, Max-Min, Least Connection, Source Hash, Least Bandwidth, and Round Robin, we have

gained insights into their applicability, limitations, and potential for optimization.

We have identified key challenges and opportunities to improve load-balancing techniques by scrutinizing

these algorithms and their performance characteristics. Our exploration has highlighted the importance of

addressing suboptimal makespan, limited scalability, vulnerability to attacks, and dependency on network

conditions.

Through the proposed work, which aims to optimize existing algorithms and enhance their adaptability,

scalability, and security, we seek to contribute to the evolution of load-balancing methodologies in cloud

computing. By developing more robust and efficient load-balancing strategies, we aim to improve resource

utilization, enhance system performance, and effectively meet the demands of modern digital environments.

Overall, this study serves as a foundation for further research and development in the field of load balancing

in cloud computing. By addressing the identified challenges and implementing proposed enhancements, we

can strive towards realizing the full potential of cloud computing technologies, ultimately leading to more

resilient, scalable, and efficient cloud infrastructures for future applications and services.

Author Contributions

Ayush Singh: Conceptualization of the study, methodology development, and writing the original draft.

Aman Kumar Sahu: Data analysis, implementation of load balancing algorithms, and manuscript review.

Nabeel Anwar Siddiqui: Assisted with research, validation of the results, and contributed to discussions on the

limitations of the strategies.

Siddharth Singh: Supervision, overall project administration, and final editing of the manuscript.

Funding

This research received no external funding.

 Singh et al.|Smart. Internet. Things. 1(1) (2024) 1-16

15

Data Availability

The data used and analyzed during the current study are available from the corresponding author upon reasonable

request.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

These sections should be tailored to reflect the specific details and contributions if necessary.

References

[1] Pradeep, K., & Jacob, T. P. (2016). Comparative analysis of scheduling and load balancing algorithms in

cloud environment. 2016 international conference on control, instrumentation, communication and

computational technologies (ICCICCT) (pp. 526–531). IEEE.

[2] Aslam, S., & Shah, M. A. (2015). Load balancing algorithms in cloud computing: a survey of modern

techniques. 2015 national software engineering conference (NSEC) (pp. 30–35). IEEE.

[3] Alkhatib, A. A. A., Alsabbagh, A., Maraqa, R., & Alzubi, S. (2021). Load balancing techniques in cloud

computing: Extensive review. Advances in science, technology and engineering systems journal, 6(2), 860–870.

https://dx.doi.org/10.25046/aj060299

[4] Shah, N., & Farik, M. (2015). Static load balancing algorithms in cloud computing: challenges & solutions.

International journal of scientific & technology research, 4(10), 365–367.

[5] Chen, H., Wang, F., Helian, N., & Akanmu, G. (2013). User-priority guided min-min scheduling algorithm

for load balancing in cloud computing. 2013 national conference on parallel computing technologies

(PARCOMPTECH) (pp. 1–8). IEEE.

[6] Ghosh, T. K., Goswami, R., Bera, S., & Barman, S. (2012). Load balanced static grid scheduling using max-

min heuristic. 2012 2nd IEEE international conference on parallel, distributed and grid computing (pp. 419–423).

IEEE.

[7] Mohapatra, H., & Rath, A. K. (2019). Fault tolerance in WSN through PE-LEACH protocol. IET wireless

sensor systems, 9(6), 358–365. https://doi.org/10.1049/iet-wss.2018.5229

[8] Alankar, B., Sharma, G., Kaur, H., Valverde, R., & Chang, V. (2020). Experimental setup for

investigating the efficient load balancing algorithms on virtual cloud. Sensors, 20(24), 7342.

https://doi.org/10.3390/s20247342

[9] Rahmika, A. R., Tahir, Z., Paundu, A. W., & Zainuddin, Z. (2023). Web server load balancing mechanism

with least connection algorithm and multi-agent system. CommIT (communication and information

technology) journal, 17(2), 245–258. https://doi.org/10.21512/commit.v17i2.8872

[10] Yang, M., Wang, H., & Zhao, J. (2015). Research on load balancing algorithm based on the unused rate of

the cpu and memory. 2015 fifth international conference on instrumentation and measurement, computer,

communication and control (IMCCC) (pp. 542–545). IEEE.

[11] Ma, C., & Chi, Y. (2022). Evaluation test and improvement of load balancing algorithms of nginx. IEEE

access, 10, 14311–14324.

[12] Mohapatra, H., & Rath, A. K. (2019). Detection and avoidance of water loss through municipality taps in

India by using smart taps and ICT. IET wireless sensor systems, 9(6), 447–457. https://doi.org/10.1049/iet-

wss.2019.0081

[13] Alhaidari, F., & Balharith, T. Z. (2021). Enhanced round-robin algorithm in the cloud computing

environment for optimal task scheduling. Computers, 10(5), 63. https://doi.org/10.3390/computers10050063

[14] Pradhan, P., Behera, P. K., & Ray, B. N. B. (2016). Modified round robin algorithm for resource allocation

in cloud computing. Procedia computer science, 85, 878–890. https://doi.org/10.1016/j.procs.2016.05.278

[15] Mohapatra, H., & Rath, A. K. (2020). Fault-tolerant mechanism for wireless sensor network. IET wireless

sensor systems, 10(1), 23–30. https://doi.org/10.1049/iet-wss.2019.0106

Optimizing cloud performance: a comprehensive study of load balancing strategies and ...

16

 [16] Kaur, R., & Luthra, P. (2014). Load balancing in cloud system using max min and min min algorithm.

International journal of computer applications, 975, 8887.

[17] Kumar, P., & Kumar, R. (2019). Issues and challenges of load balancing techniques in cloud computing:

A survey. ACM computing surveys (CSUR), 51(6), 1–35. https://dl.acm.org/doi/abs/10.1145/3281010

[18] Mohapatra, H., & Rath, A. K. (2020). Survey on fault tolerance-based clustering evolution in WSN. IET

networks, 9(4), 145–155. https://doi.org/10.1049/iet-net.2019.0155

[19] Martin, R., Menth, M., & Hemmkeppler, M. (2007). Accuracy and dynamics of multi-stage load balancing

for multipath internet routing. 2007 IEEE international conference on communications (pp. 6311–6318). IEEE.

[20] Mohapatra, H., & Rath, A. K. (2019). Fault tolerance through energy balanced cluster formation (ebcf) in

WSN. Smart innovations in communication and computational sciences: proceedings of icsiccs-2018 (pp. 313–

321). Springer.

[21] Mohapatra, H., & Rath, A. K. (2022). IoE based framework for smart agriculture: Networking among all

agricultural attributes. Journal of ambient intelligence and humanized computing, 13(1), 407–424.

DOI:10.1007/s12652-021-02908-4

[22] Derakhshan, M., & Bateni, Z. (2018). Optimization of tasks in cloud computing based on max-min, min-

min and priority. 2018 4th international conference on web research (ICWR) (pp. 45–50). IEEE.

[23] Mohapatra, H., & Rath, A. K. (2021). An IoT based efficient multi-objective real-time smart parking

system. International journal of sensor networks, 37(4), 219–232. https://doi.org/10.1504/IJSNET.2021.119483

[24] Khan, B. U. I., Olanrewaju, R. F., Morshidi, M. A., Mir, R. N., Kiah, M. L. B. M., & Khan, A. M. (2022).

Evolution and analysis of secure hash algorithm (Sha) family. Malaysian journal of computer science, 35(3),

179–200. https://doi.org/10.22452/mjcs.vol35no3.1

