
 Corresponding Author: vaidehi14nv@gmail.com

 https://doi.org/10.22105/siot.v1i1.30

Licensee System Analytics. This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).

1|Introduction

The birth of the cloud computing era was ushered in by the development of computing technologies, which

in turn brought about a new paradigm for user services by enabling pay-per-use access to IT services from

any location at any time. Many businesses are moving their operations to the cloud due to the flexibility of

cloud services, and service providers are expanding their data centers to accommodate more users [1]. The

difficulties with stream computing get worse as enterprise clusters get bigger and store more data. Therefore,

real-time handling of dynamic and volatile data streams is necessary [2].

 Smart Internet of Things

www.siot.reapress.com

 Smart. Internet. Things. Vol. 1, No. 1 (2024) 67–82.

Paper Type: Original Article

From Theory to Practice: Addressing Load Balancing

Challenges in Real-Time Cloud Applications

Vaidehi Gupta1,*, Vaibhav Sahay1

1 Department of Computer Engineering, KIIT University, Bhubaneswar, India; vaidehi14nv@gmail.com; vsahay717@gmail.com.

Citation:

Received: 06 March 2024

Revised: 11 June 2024

Accepted: 16 August 2024

Gupta, V., & Sahay, V. (2024). From theory to practice: addressing load

balancing challenges in real-time cloud applications. Smart Internet of

Things, 1 (1), 67-82.

Abstract

The world is currently steered by the paradigms of cloud technology. The internet tools work in alignment with cloud

technologies, since they have become its essential components. It addresses challenges like load balancing which

ensures efficient distribution of traffic among multiple servers for optimal service delivery. This paper is therefore

dedicated to finding out how to identify and solve specific challenges related to load balancing in real time cloud

computing applications. The existing study therefore puts in doubt the notion that universal load balancing

technology can be used for all cloud applications. This revelation highlights a notable void in literature and practices,

expressing the need for customised strategies responsive to customers’ needs on a real time basis. Our results show

that if adapted balancing solutions are used, instead of traditional techniques, real-time system’s performance can

profit from improved efficiency and reliability. Hence, this work enhances our understanding of the subtleties of

cloud computing, especially those issues which affect its ability to perform well in diverse applications. These findings

pave the way for future research on more reliable and efficient cloud services that can increase overall impact on

technological growth as well as influence both digital and physical environments.

Keywords: Cloud computing, Load balancing, Load balancing algorithms, Real-time applications.

mailto:dastam66@gmail.com
http://www.siot.reapress.com/

 From theory to practice: addressing load balancing challenges in real-time

68

 Future IT real-time applications will keep pushing for performance scaling in everything from servers to

sensors. Real-time applications are anticipated to offer a high degree of parallelism, where real-time operations

can employ many cores simultaneously in order to fully take advantage of multicore CPUs. A scheduling

strategy that provides high scheduling and efficient load balancing is necessary to provide real-time

performance while optimising multicore resources [3].

The variability of demand in a cluster system makes it more challenging to distribute the load evenly among

its nodes. Furthermore, a large degree of fluctuation generally results in incorrect load balancing decisions

being made with outdated information, which makes it challenging to make corrections in real time while an

application is running [4]. Data centers can prevent Virtual Machine (VM) overloading and/or under-loading

by using load balancing in the cloud. This is a challenge in the realm of cloud computing.

Consequently, developers and researchers must create and execute a suitable load balancer for distributed and

parallel cloud settings [5]. The main purpose of Load Balancing Algorithms (LBAs) is to minimise the overall

job execution time while optimising processor utility and distributing the load evenly across them. This

suggests that there should be as little variation as possible between processors that are the most and least

loaded. Consequently, in order to improve the effectiveness of the load-balancing mechanism for real-time

applications of the aforementioned paradigm, the load information on each processor must be updated [4].

The load balancer's primary goal is to distribute resources evenly among tasks in order to maximise resource

efficiency, user satisfaction, and minimum cost. It also produces high-quality work, gripping rapid traffic

blasts that sustain website traffic and elasticity, all of which encourage us to identify and address LB issues as

they arise [6]. This is essential to guaranteeing that clients, associates, and end users of cloud-based apps may

access them with ease. The potential of load balancing and its many uses serve as inspiration for discussing

this significant task, identifying the main problems with LB, and finding solutions for them [7].

By doing calculations closer to the user or data source, the main objective is to minimise latency and

bandwidth utilisation and do away with the necessity of sending massive volumes of data to a centralised

server. Additionally, it encourages serverless design, which makes application scaling and deployment simpler.

This lowers operating costs and boosts efficiency [8].

With the growing number of multicore processors, load balancing for workloads has recently received

renewed attention. To ensure that each core is working at the same pace, load balancing aims to spread the

computational load equally. It is possible to use resources effectively without over provisioning or wasting

them by distributing the workload between cores.

Furthermore, combining balancing with the DVS approach can greatly minimise energy use, as demonstrated

in. We anticipate that balanced loads can also result in other important advantages, including increased

dependability, phase-change memory-related wear management, and throughput optimization [9].

There are two primary types of load-balancing techniques: dynamic and static. Static approaches disregard the

current system load in favour of preset timetables based on projected demand. This could result in ineffective

task allocation since it necessitates collecting static information about every node in advance. On the other

hand, dynamic load balancing dynamically modifies the distribution of tasks among processing units by

continuously analysing the system load in real time. For best results, this strategy seeks to balance each

processor's workload according to its capabilities [10].

Fig. 1 represents the difference between the Static v/s Dynamic Load Balancing in Cloud Computing.

 Gupta and Sahay|Smart. Internet. Things. 1(1) (2024) 67-82

69

Fig. 1. Difference between static v/s dynamic load in cloud computing.

The project's goal is to create and put into practice a distributed process scheduling mechanism for the

hierarchical cluster-based distributed real-time system model that was previously designed. In this paradigm,

the system is made up of groups of computer nodes. Every cluster has a synchronous ring protocol in

operation. Representatives from each cluster oversee the clusters. Additionally, there is a higher-level ring

made up of the lower-level cluster representatives. The hierarchy may consist of two or more levels. A leader

oversees the entire system at the highest level. A distributed real-time platform for distributed real-time is

what the system is intended to offer [11].

A group of either heterogeneous or homogeneous systems is referred to as a parallel computing system.

Parallel computing system's program execution may use varying numbers of processors at different times

within an instruction cycle. Parallel processing is a recently developed idea that can run many jobs on separate

processors at the same time. It is a useful method for resolving difficult problems requiring a lot of

computation [12]. Depending on the type of processor, a parallel system can be classified as either

homogeneous or heterogeneous. A multiprocessor system is the fundamental element of a parallel system

(MTS). Multiple processing elements, multiple memory modules, and numerous input/output modules are

found in MTSs. Each CPU has the entitlement to utilise any memory modules and any input-output

components. The Multiprocessor Interconnection Network (MIN) handles the connections between them

[4]. Numerous processing components, referred to as nodes, make up the MTS. These systems are calculated

in terms of low degree, reduced diameter, complexity, and cost, among other parametric topological qualities.

Many multiprocessor systems, such the Folded Crossed Cube, Hypercube, and Crossed Cube, have been

proposed [13]. Hypercube (HC), however, is a typical MIN. An HC network consists of n nodes with n

linkages between each node. Despite its commercial acceptance, the hypercube interconnection network—

which has the potential to handle data in parallel—has an exponential 2-fold extension. The HC network's

debruijn network has the primary example [14].

2|Literature Review

2.1|Cloud Computing Environment and Big Data effects

This study aims to explore the challenges and opportunities of load balancing in the context of cloud

computing in real-time applications. Cloud computing, a relatively new technology, mostly refers to a

centralised storage area made possible by distant machines running internet-based software [15]. To increase

productivity, users will disperse resources and services around the network. There are several methods for

choosing and assessing cloud computing [16]. The number of Internet users and Internet of Things (IoT)

devices is rising in this Big Data era, and so is the volume of data that needs to be processed in real time. The

 From theory to practice: addressing load balancing challenges in real-time

70

 difficulties with cloud computing get worse as enterprise clusters get bigger and store more data [2]. Users

can access a large pool of shared resources, such as software, data, storage, and applications, whenever they

need them with cloud computing. Due to the technology's rapid development, a sizable user base demanding

higher levels of customer satisfaction has been drawn in. In this quickly changing environment, load balancing

has become an important field of study [17]. This study addresses the shortcomings of the real-time data

stream collection system Apache Flume by suggesting enhancements to load balancing and storage. To cut

down on disk and network overhead, they provide a memory-file channel storage technique and a load

balancing strategy based on free memory. Experiments conducted under a variety of situations, including a

bad network, high availability demands, memory resource rivalry, and big data sizes, demonstrate considerable

gains in availability (above 99.999%) and performance (10–50%) [14]. Fig. 2 represents Cloud Computing and

Big Data as a perfect combination [18].

Fig. 2. Cloud computing and big data-a perfect combination.

2.2|Requirement of an Efficient Load Balancing Technique

Hence, an effective load balancing mechanism is the ultimate need of the hour. The unreliability of the

centralised load balancer, commonly designed for cloud environments that shows scalability constraints needs

to be addressed. To achieve this, an effective distributed architectural design for the serverless edge, aiming

to significantly improve the overall system performance needs to be designed [19]. Therefore, addressing load

balancing challenges and developing robust solutions remains an active area of research, crucial for ensuring

the continued success and smooth operation of cloud-based applications.

Efficient techniques for load balancing are essential for maximising system performance and resource usage

in cloud environments. Through the dynamic distribution of workloads among multiple nodes, these

algorithms guarantee effective resource allocation and timely service provisioning. Fundamentals of cloud

computing, including its design and underlying technologies for virtualization. After that, it discusses load

balancing and highlights the difficulties that come with it in a cloud setting. An overview of the many loads

balancing algorithms now in use, opening the door to a more thorough comprehension of this crucial cloud

computing feature [20]. Traditional load balancing strategies in web server clusters are challenged by big data

demands.

To overcome these drawbacks, this research suggests a unique dynamic model that makes use of the SSAWF

mechanism [10]. In cloud computing, LBAs present issues and opportunities that are explored in this paper

[21]. The advantages and disadvantages of different algorithms are covered, along with frequent load

balancing issues and mitigation strategies. They stress that in order to prevent VM overload or underload and

 Gupta and Sahay|Smart. Internet. Things. 1(1) (2024) 67-82

71

to maximise resource utilisation and energy efficiency, LBAs are essential. In order to efficiently manage

workloads across several computers, the study emphasises the significance of building LBAs specifically for

distributed and parallel cloud systems [4]. The difficulties of load balancing in cloud computing are examined

in this paper. The authors acknowledge the various services and advantages that cloud computing provides,

but they concentrate on the specifics of load balancing in this context. The paper begins by laying out a basic

understanding of cloud computing technology, delves into load balancing strategies, and then highlights some

of the major issues in this field [17]. This paper investigates load balancing issues in cloud computing. As

cloud services become more popular, effective use of resources and task completion become essential.

Although there are many strategies for managing performance, scheduling, and resources, load balancing is

still a major obstacle to keeping VMs from overloading and under-loading [22]. The authors stress the

necessity for researchers to create LBAs for cloud systems that are better and more effective [18]

2.3|Dynamic Load Balancing and its benefits

Strong suspend functionality is integrated into SSAWF to momentarily halt operations during peak loads.

Dynamic load-balancing decisions are made using a cubic exponential smoothing forecast with AHP. In

comparison to conventional methods, the authors anticipate that this model will enhance performance under

anomalous loads, high concurrency, and high system loads. To fully assess the model's efficacy, more

investigation is required. This investigation should focus on a theoretical examination of the SSAWF

mechanism, real-world testing, and comparison analysis [10].

Multi-core CPUs become increasingly important as future real-time applications require better performance

levels. But to fully utilise these cores, scheduling needs to give equal weight to load balancing (an even

distribution of demand) and scheduling (a guaranteed task completion) [23]. In order to achieve both, this

paper suggests a unique scheduling algorithm that outperforms current approaches to load balancing while

preserving good schedulability. This well-rounded strategy highlights its potential for use in next-generation

real-time systems while also reducing energy consumption [9]. Table 1. Shows cloud load balancing in real-

time applications.

Table 1. Cloud load balancing in real-time applications: a summary.

S/N Questions Options

1 The increasing demand for real-time applications and big data
processing necessitates efficient load balancing techniques.

[2]

2 Traditional load balancing methods struggle to handle the challenges
presented by big data, such as high volume and complex data
structures.

[10]

3 Dynamic load balancing adapts to changing workloads by dynamically
distributing tasks across available resources, improving performance
and system responsiveness.

[10]

4 Various techniques, such as the Self-Scheduling with Adaptive Fuzzy
Weights (SSAWF) mechanism and middleware services, are employed
for dynamic load balancing in real-time systems.

[10], [4]

5 Cloud computing enables on-demand access to shared resources like
software, data, and storage.

[11]

6 Effective load balancing is crucial for managing workloads and
ensuring smooth operation in cloud environments.

[11]

7 The development and implementation of efficient LBAs are essential
for optimal resource utilisation, performance, and scalability in cloud
systems.

[4]

 From theory to practice: addressing load balancing challenges in real-time

72

 Table 1. Continue.

A fault-tolerant communication protocol for real-time systems is proposed in this paper. For effective data

interchange, it makes use of hierarchical rings and synchronous communication. On top of this protocol,

dynamic load balancing is put into place with the goal of distributing workload among processing nodes while

taking real-time constraints into account. For distributed real-time systems, this combination method provides

optimal performance and fault tolerance [12]. The topic of this study is load balancing for real-time systems

operating in dynamic settings with erratic workloads. In such cases, traditional static techniques are ineffective.

To address these issues, the authors suggest middleware services with dynamic load balancing. These services

were put into use and tested in a Navy system as well as a benchmark suite, proving their efficacy in preserving

real-time quality of service even in extremely dynamic environments [13].

The effectiveness of a dynamic load balancing method (DLBS) for hypercube networks in multiprocessor

systems is examined in this paper. Equitable workload distribution among processors is the goal of DLBS,

which enhances reaction time and resource efficiency. In contrast to static techniques, DLBS functions

without any prior knowledge about the state of the system or task behaviour. However, there are obstacles

to overcome when creating successful DLBS algorithms, such as maximising system utilisation, reducing data

transfer, and carefully choosing which activities to migrate. The performance evaluation of DLBS in a

particular network topology is the main objective of this study [15].

3| Proposed Study

3.1|Research Gap

While current research fills in many important gaps regarding cloud load balancing for real-time applications,

it still offers essential insights on how the current literature failed to deliver the following: Though generally

successful, traditional approaches have trouble preserving fault tolerance in real-time situations, which could

cause performance reduction when faults occur [17]. This causes a huge problem in data consistency and

hence the overall efficiency of the system falters making it inefficient for any real-time applications. Moreover,

maintaining data coherency in the event of a system breakdown continues to be a difficult task in the same

context [24].

An additional deficiency is the absence of multi-objective load balancing strategies that take efficiency and

security into account. The performance-energy optimization trade-off in the pre-mentioned phase is the main

focus of current research, and security is a critical component that is almost always ignored [1]. Given the

veracious variety of the huge volume of Big Data being produced at a great velocity, a security threat to it

proves to be a major drawback that makes the system inefficient and unworthy as a whole. The literature

study currently browsed, also emphasises the absolute and effective necessity of investigating dynamic load

balancing strategies further in order to develop solutions that can adjust to the constantly shifting demands

of real-time workloads [10]. Prospective directions for future research may also arise from examining the

possibilities of artificial intelligence and machine learning for intelligent load balancing in real-time

applications [3].

S/N Questions Options

8 Implementing effective dynamic load balancing comes with challenges,
including maximizing resource utilization, minimizing data transfer
overhead, and efficiently migrating tasks between resources.

[15]

9 Careful consideration needs to be given to task characteristics and
network conditions when choosing and implementing dynamic LBAs
to ensure efficient task migration.

[15]

10 Ongoing research is focused on addressing challenges and developing
robust solutions to ensure the continued success and smooth
operation of cloud-based applications.

[17]

 Gupta and Sahay|Smart. Internet. Things. 1(1) (2024) 67-82

73

3.2|Finding

The identification of the research gap underscores the necessity for developing advanced LBAs that are

inherently designed to support the unique requirements of existing real-time systems, with a particular

emphasis on fault tolerance [4]. Achieving a high degree of system and data integrity, particularly during

instances of complete system failures, necessitates the refinement of load balancing methods. Such

advancements are critical at this juncture [13].

While traditional approaches like Byzantine Fault Tolerance algorithms and replicated state machines offer

some promise, their reliability across diverse scenarios remains questionable, underscoring the need for more

stable solutions [1]. The quest for superior resource management, heightened performance, and robust

defence mechanisms against cybersecurity threats underlines the importance of integrating security

parameters within load balancing frameworks.

Moreover, it is imperative to recognize that while the balancing act between performance enhancement and

energy conservation is vital, an overemphasis on this aspect might overshadow other crucial optimization

objectives, including security considerations. The development of LBAs that strike a harmonious balance

across a spectrum of optimization strategies unveils significant research avenues and presents a viable answer

to the challenges outlined.

This approach requires a broadened perspective that extends beyond mere performance and energy efficiency

to include considerations such as cost-effectiveness, security, scalability, and judicious resource allocation [2].

By addressing these research voids and experimenting with innovative strategies, we can substantially elevate

the effectiveness and robustness of cloud-based load balancing solutions tailored for real-time applications.

This comprehensive examination and proposed strategic redirection aim to catalyse the development of load

balancing solutions that are not only responsive to the dynamic demands of real-time applications but also

encapsulate a holistic view of system optimization. The incorporation of artificial intelligence and machine

learning techniques into load balancing strategies emerges as a particularly promising area of exploration.

These technologies have the potential to facilitate the creation of self-adjusting, intelligent systems capable of

anticipating and mitigating potential disruptions before they impact system performance [3].

In conclusion, such enhancements are poised to ensure reliable system performance, maintain data

consistency, and fortify resilience against a diverse array of challenges. Ultimately, this will contribute to a

more effective and efficient resolution of the identified issues, fostering an environment where real-time

applications can thrive unhindered by the limitations currently faced.

By embracing this multidimensional approach, future research has the potential to revolutionise the landscape

of cloud computing, ensuring that real-time applications are supported by a foundation that is not only

efficient and scalable but also resilient and secure against an evolving landscape of threats and challenges.

This endeavour will require a concerted effort from the research community to bridge the identified gaps,

leveraging the synergies between technological innovation, strategic insight, and a deep understanding of the

nuanced requirements of real-time cloud computing environments.

3.3|Analysis

3.3.1|Overview of the environment

The foundation of our research on dynamic load balancing for real-time applications in cloud computing is

predicated on a meticulously designed experimental environment. This environment is crafted to simulate

real-world cloud computing scenarios where load balancing plays a critical role in managing the distribution

of computational tasks across a network of virtual servers. The primary aim is to explore the efficiency, fault

tolerance, and adaptability of various load balancing strategies under conditions that closely mimic the

operational dynamics encountered in live cloud-based applications.

 From theory to practice: addressing load balancing challenges in real-time

74

 3.3.2|Hardware specifications

The hardware requirements offer a solid framework for creating an environment that is durable and scalable

for load balancing real-time applications. Changes could be made in response to particular needs and financial

limitations. In order to handle potential increases in application demand, scalability alternatives must also be

taken into account. The following hardware specifications are extremely important for setting up the desired

environment:

I. Compute optimised instances: high-performance servers with multiple core CPUs (such as Intel Xeon) or

GPUs (e.g., NVIDIA Tesla V100) for parallel processing capabilities essential for training models.

II. Memory: at least 32 GB RAM to handle large datasets and facilitate in-memory data processing.

III. Network: quick networking hardware (such as gigabit switches) to enable seamless data transmission.

IV. Storage: high-speed SSDs for faster read/write operations, with adequate storage capacity to store large

datasets, models, and logs.

3.3.3|Software and tools

The components required to set up, manage, watch over, and secure load balancing infrastructures for real-

time applications are provided by these tools and software. The choice of particular tools may differ

depending on personal needs, inclinations, and infrastructure compatibility. A suite of software and tools is

essential for an efficient machine learning workflow:

I. Data science platforms: JupyterLab or RStudio for interactive data exploration and model development.

II. Machine learning frameworks: tensorflow, PyTorch, or Scikit-learn for building and training machine

learning models.

III. Version control: git for code versioning, along with platforms like GitHub or GitLab for repository hosting

and collaboration.

IV. CI/CD Tools: jenkins or GitLab CI/CD for automating the testing and deployment of models.

V. Containerization: Docker for creating reproducible environments and Kubernetes for orchestrating

containerized applications.

3.3.4|Configuration details

You can set up and customise HAProxy as a dependable and effective load balancer for your real-time

applications, guaranteeing top performance and scalability, by adhering to these setup settings. Changes could

be made in accordance with particular needs and best practices in your setting.

I. Development environments: install and configure JupyterLab or RStudio on computer instances or local

machines.

II. Machine learning frameworks: ensure the correct installation of TensorFlow, PyTorch, and other libraries,

considering the compatibility with CPU or GPU hardware.

III. CI/CD Pipelines: configure pipelines for automated testing and deployment of models, including stages for

data validation, model training, evaluation, and deployment.

3.3.5|Dataset description

Although a specific dataset isn't offered, building, implementing, and optimising the load balancing

environment successfully requires having access to pertinent data and performance indicators. The

description of this dataset emphasises how crucial it is to comprehend the nature and demands of the

workload in order to guarantee the load balancing infrastructure operates as intended. The dataset(s) used in

this environment should be:

I. Relevant and diverse: covering a wide range of scenarios and variations to train robust models.

 Gupta and Sahay|Smart. Internet. Things. 1(1) (2024) 67-82

75

II. Pre-processed and cleaned: including necessary preprocessing steps like normalisation, encoding, and

handling missing values.

III. Split appropriately: divided into training, validation, and test sets to ensure proper model evaluation and

testing.

3.3.6|Replication instructions

You can build up a load balancing system using HAProxy to effectively spread incoming traffic among

numerous backend servers for real-time applications by following these replication instructions. Be careful to

modify the configuration and settings in accordance with your unique needs and surroundings. To replicate

the environment, follow these steps:

I. Provision hardware: set up compute instances with the specified hardware or utilise cloud-based services.

II. Install software: install and configure the required software and tools on your machines or instances.

III. Prepare data: process and prepare your datasets as described, ensuring they are ready for use in model

training.

IV. Develop and train models: utilise the development environment and machine learning frameworks to create

and train models.

V. Deploy models: follow the CI/CD pipeline configuration to automate the deployment of models into

production.

3.3.7| Troubleshooting and tips

Through adherence to these troubleshooting guidelines and best practices, you may proactively tackle issues

and enhance the dependability and efficiency of your load balancing setup for real-time applications. To keep

an infrastructure strong and resilient, regular testing, monitoring, and improvement are essential.

I. Resource utilisation: monitor CPU/GPU utilisation and memory usage to optimise the computational

resources.

II. Model training efficiency: experiment with different model architectures and parameters to find the optimal

balance between performance and training time.

III. Deployment challenges: test the model thoroughly in a staging environment to catch any deployment issues

before rolling out to production.

In essence, the setup of our environment is meticulously designed to establish a practical and regulated

infrastructure for exploring the challenges and opportunities associated with the implementation of dynamic

load balancing within cloud computing. By adopting this detailed approach, our goal is to offer valuable

insights that can enhance the efficiency, resilience, and security of real-time cloud applications, thereby paving

the way for advancement. This advancement results in quicker iteration, improved model performance, and

ultimately, the development of more impactful machine learning applications. It is crucial to continuously

learn and adapt to new tools and methodologies in order to uphold an efficient machine learning ecosystem.

For real-time applications to provide high availability, scalability, and optimal performance, an efficient load

balancing solution must be implemented. Organisations can avoid load balancing difficulties and ensure a

flawless user experience for their real-time apps by adhering to the recommended best practices and

environmental configuration. Maintaining the load balancing infrastructure's efficacy over time requires

regular monitoring, troubleshooting, and tuning.

Eventually, enterprises may reduce load balancing issues and provide a flawless user experience for their real-

time apps by putting into practice the environmental configuration described here. Our applications' success

and our users' delight are supported when we have a strong load balancing solution in place that opens the

door for improved scalability, reliability, and performance.

 From theory to practice: addressing load balancing challenges in real-time

76

 As it sets out on its voyage, the EnhancedLoadBalancing algorithm carefully constructs an advanced load

balancing environment so that it can distribute incoming network traffic among a fleet of backend servers in

an intelligent manner. The foundation for striking a harmonic balance between optimising resource

consumption efficiency and preserving high availability and fault tolerance of web services is laid during this

crucial preparatory phase. In this first stage, the algorithm takes a number of calculated actions to provide the

load balancer with the data and tools it needs to function properly.

The first step is to add a complete list of backend servers to the load balancer. Specific attributes, such weights

and capacities, are marked on each server in this list to indicate how well it can handle requests. These

characteristics are essential for the load balancer to be able to decide how to divide incoming traffic among

the servers according to their individual capacities and load levels.

4|Algorithm

Algorithm enhanced load balancing

Initialize LoadBalancer

LoadBalancer.servers = List of BackendServers with weights and capacities

LoadBalancer.monitoring System = Setup Monitoring System()

PerformInitialHealthChecks (Load Balancer.servers)

Function Handle Incoming Request (Request)

Server = SelectServer (Request, LoadBalancer.servers)

 if CheckServerHealth (Server) then

ForwardRequest(Server, Request)

MonitorPerformance (Load Balancer.servers)

DynamicallyAdjustLoad Balancing Strategy (LoadBalancer.servers)

 else

Retry with next available server or return error

Function SelectServer (Request, Servers)

// Hybrid selection based on Round-Robin, Least Connections, and Weighted

Selected Server = ApplyHybridSelection Algorithm (Servers)

return SelectedServer

Function CheckServerHealth (Server)

// Enhanced with predictive analytics

HealthStatus = PerformHealthCheck (Server)

return HealthStatus == Healthy

Function ForwardRequest(Server, Request)

EstablishSecureConnection (Server)

SendRequestToServer(Server, Request)

Function MonitorPerformance (Servers)

Metrics = CollectPerformanceMetrics (Servers)

 Gupta and Sahay|Smart. Internet. Things. 1(1) (2024) 67-82

77

Analyze MetricsForAnomalies (Metrics)

AdjustServerWeights Based On Performance (Metrics)

Function Dynamically AdjustLoad Balancing Strategy (Servers)

ApplyMachineLearning Models For Prediction (Servers)

 AdjustLoadBalancingParameters (Servers)

// Initialization of monitoring and health check systems, not fully detailed

Function Setup Monitoring System()

return new MonitoringSystem

Function PerformInitialHealthChecks (Servers)

foreach Server in Servers do

if not CheckServerHealth (Server) then

MarkServerAsUnhealthy(Server)

Function ApplyHybridSelectionAlgorithm (Servers)

// Logic to combine Round-Robin, Least Connections, and Weighted algorithms

// Placeholder for simplicity

return Server

Function PerformHealthCheck (Server)

// Placeholder for health check logic

return ServerStatus

Function Establish SecureConnection (Server)

// Logic to establish a secure channel

return Connection

Function SendRequestToServer(Server, Request)

// Logic to send the request over the established connection

Function CollectPerformanceMetrics (Servers)

// Collect and return metrics

return Metrics

Function Analyze Metrics For Anomalies (Metrics)

// Analyze metrics using AI/ML for anomaly detection

Function AdjustServerWeights Based On Performance (Metrics)

// Adjust weights dynamically based on performance analysis

Function Apply MachineLearning Models ForPrediction (Servers)

// Use ML models to predict load and adjust strategies

Function AdjustLoad BalancingParameters (Servers)

// Adjust parameters like weights, selection strategy based on predictions

 From theory to practice: addressing load balancing challenges in real-time

78

 End Algorithm.

The algorithm not only creates the list of backend servers but also starts the monitoring system's deployment.

This technology is essential to the load balancing environment since it continuously delivers information on

the backend servers' performance and health. The monitoring system allows for the proactive identification

of problems that could impact response times and service availability, like server overloads or failures, by

gathering and evaluating real-time data.

Moreover, because the algorithm understands how important it is to get off to a strong start, it does

preliminary health checks on every server. Before a server is added to the load balancing cycle, it is imperative

that it is operational and prepared to take traffic. When a server does not pass these initial health checks, it is

marked as unhealthy and cannot accept more traffic until the problems are fixed. This preventive action

guarantees that the load balancing process starts with a stable and dependable group of servers and helps

prevent possible disruptions in service.

The EnhancedLoadBalancing algorithm generates a dynamic and responsive load balancing environment by

means of these painstaking initialization procedures. In addition to being set up to divide incoming requests

among available resources in an effective manner, this environment is also ready to adjust in real-time to

shifting circumstances and demands, guaranteeing the best possible performance and dependability for online

services.

4.1|Discussion

We can create an algorithm to effectively manage incoming traffic and distribute requests among backend

servers based on the needs discussed and the load balancing environment's specifications. The algorithm will

take into account variables including the state of the server, the load balancing plan, and data from real-time

monitoring. A high-level summary of the suggested algorithm is provided below:

Initialization

I. Initialise the load balancer with a list of backend servers and their respective weights.

II. Set up health checks to monitor the status of backend servers periodically.

Receive incoming requests

Listen for incoming requests on the load balancer's frontend interface.

Select backend server

When a request arrives, select a backend server based on the chosen load balancing algorithm:

I. Round-robin: rotate through the list of backend servers in a sequential manner.

II. Least connections: choose the server with the fewest active connections.

III. Weighted load balancing: consider server weights to prioritise higher-capacity servers.

Check server health

Before forwarding the request, perform a health check on the selected backend server:

I. Verify that the server is responsive and available to handle requests.

II. Exclude unhealthy servers from the pool of candidates for load balancing.

Forward request

If the selected backend server passes the health check, forward the incoming request to it.

Monitor performance metrics

Continuously monitor performance metrics, such as response time, throughput, and server load:

 Gupta and Sahay|Smart. Internet. Things. 1(1) (2024) 67-82

79

I. Collect real-time data on request rate, response time, and server health.

II. Analyse metrics to identify trends, anomalies, and potential bottlenecks.

Dynamic adjustment

Based on the observed performance metrics, dynamically adjust the load balancing strategy and server

weights:

I. Scale up or down server weights to distribute traffic more evenly.

II. Implement failover mechanisms to redirect traffic away from underperforming or unavailable servers.

Logging and alerting

I. Log load balancing decisions, server health checks, and performance metrics for monitoring and

troubleshooting purposes.

II. Set up alerts to notify administrators of critical events, such as server failures or exceeding predefined

thresholds.

Continuous optimization

I. Regularly review and refine the load balancing configuration and algorithm parameters based on changing

application requirements and traffic patterns.

II. Conduct performance testing and benchmarking to validate the effectiveness of load balancing strategies and

identify areas for improvement.

By implementing this method, organisations can ensure the reliability and scalability of their real-time systems,

optimise resource utilisation, and effectively handle incoming traffic.

This strategic approach not only enhances performance but also allows for streamlined operations in dynamic

environments. With the utilisation of such techniques, businesses can adapt efficiently to changing demands

and fluctuations in workload. Employing this method enables real-time systems to dynamically adjust their

load balancing parameters, ensuring a balanced distribution of tasks and improved network responsiveness.

Continuous monitoring and feedback mechanisms play a crucial role in fine-tuning these capabilities, enabling

the system to seamlessly navigate varying conditions. Notably, this method promotes a seamless user

experience by guaranteeing consistent performance levels.

The inclusion of a detailed flowchart outlining the proposed algorithm provides a visual aid that elucidates

the systematic process guiding optimal system performance in real-time environments. Fig. 3 represents the

schematic flowchart diagram of the same.

 From theory to practice: addressing load balancing challenges in real-time

80

Fig. 3. A flowchart depicting the proposed solution.

5|Conclusion

This paper has therefore delved into the intricacies and demands of load balancing in real-time cloud

computing applications, illustrating the problems with generic methods and thus necessitating purpose-built

solutions. It establishes that adaptive load balancing mechanisms can significantly improve the efficiency and

reliability of real-time systems vis-à-vis the traditional solutions which are one-size-fits-all. This shift will not

only see better performance in the system but also enable greater understanding of cloud computer dynamics

needed for addressing various needs in digital environments. Therefore, our findings advocate for a change

towards customised load balancers, showing that existing approaches fail to address peculiar requirements

associated with real-time applications.

The research reveals a major research-practice gap that highlights the importance of formulating load

balancing mechanisms that account for dynamic cloud environments and specific requirements of real-time

applications. By using adaptive and dynamic approaches we can ensure platforms in cloud computing manage

modern complex digital apps hence improving overall system performance and reliability. The study also

reveals the future possibility of further research to investigate more dependable and efficient cloud services.

 Gupta and Sahay|Smart. Internet. Things. 1(1) (2024) 67-82

81

It persuades for joint effort in narrowing down on the answers that can work through the complexities of

load balancing in cloud computing especially focusing on real-time applications. The developments made in

this field will not only improve Cloud Computing but at the same time play a big role in technological

development as it affects both physical and digital landscapes. To sum up, findings from this paper contribute

to better understanding of real time cloud computing load balancing issues. Also, it suggests that there should

be a paradigm shift towards modularized and adaptable solutions which calls for a holistic approach to address

specific needs and changing conditions within a cloud environment. This way, we could meet those challenges

head-on and unlock the full potential of cloud computing to ensure its continued role as the driving force

behind technology growth while shaping our digital futures.

Author Contributions

Vaidehi Gupta contributed to conceptualization, formal analysis, and drafting the manuscript. Vaibhav Sahay

handled methodology, data collection, and contributed to writing – review & editing.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-

profit sectors.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current

study.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kumar, P., & Kumar, R. (2019). Issues and challenges of load balancing techniques in cloud computing: a

survey. ACM computing surveys (CSUR), 51(6), 1–35.

[2] Sun, D., Zhang, C., Gao, S., & Buyya, R. (2024). An adaptive load balancing strategy for stateful join

operator in skewed data stream environments. Future generation computer systems, 152, 138–151.

https://www.sciencedirect.com/science/article/pii/S0167739X23004016

[3] Mukherjee, S., & Mohapatra, H. (2024). Performance analysis of different manet routing protocols. 2024 5th

international conference on innovative trends in information technology (ICITIIT) (pp. 1–6). IEEE.

[4] Kang, J., & Waddington, D. G. (2012). Load balancing aware real-time task partitioning in multicore

systems. 2012 IEEE international conference on embedded and real-time computing systems and applications (pp.

404–407). IEEE.

[5] Mohapatra, H. (2021). Socio-technical challenges in the implementation of smart city. 2021 international

conference on innovation and intelligence for informatics, computing, and technologies (3ICT) (pp. 57–62). IEEE.

DOI: 10.1109/3ICT53449.2021.9581905

[6] El Kabbany, G. F., Wanas, N. M., Hegazi, N. H., & Shaheen, S. I. (2011). A dynamic load balancing

framework for real-time applications in message passing systems. International journal of parallel

programming, 39, 143–182.

[7] Beltran, M., & Guzman, A. (2008). Designing load balancing algorithms capable of dealing with workload

variability. 2008 international symposium on parallel and distributed computing (pp. 107–114). IEEE.

[8] Mohapatra, H., & Rath, A. K. (2019). Fault tolerance in WSN through PE-LEACH protocol. IET wireless

sensor systems, 9(6), 358–365. https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-wss.2018.5229

 From theory to practice: addressing load balancing challenges in real-time

82

 [9] Shahid, M. A., Islam, N., Alam, M. M., Su’ud, M. M., & Musa, S. (2020). A comprehensive study of load

balancing approaches in the cloud computing environment and a novel fault tolerance approach. IEEE

access, 8, 130500–130526. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9139971

[10] Aslanpour, M. S., Toosi, A. N., Cheema, M. A., Chhetri, M. B., & Salehi, M. A. (2024). Load balancing for

heterogeneous serverless edge computing: a performance-driven and empirical approach. Future generation

computer systems, 154, 266–280. https://www.sciencedirect.com/science/article/pii/S0167739X24000207

[11] Mahmood, T., & ur Rehman, U. (2024). Providing decision-making approaches for the assessment and

selection of cloud computing using bipolar complex fuzzy Einstein power aggregation operators.

Engineering applications of artificial intelligence, 129, 107650.

https://www.sciencedirect.com/science/article/pii/S0952197623018341

[12] Mohapatra, H., & Rath, A. K. (2019). Detection and avoidance of water loss through municipality taps in

India by using smart taps and ICT. IET wireless sensor systems, 9(6), 447–457.

https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-wss.2019.0081

[13] Liu, D., Shang, W., Zhu, L., & Feng, D. (2016). An improved dynamic load-balancing model. 2016 4th intl

conf on applied computing and information technology/3rd intl conf on computational science/intelligence and applied

informatics/1st intl conf on big data, cloud computing, data science & engineering (ACIT-CSII-BCD) (pp. 337–341).

IEEE.

[14] Joshi, S., & Kumari, U. (2016). Load balancing in cloud computing: challenges & issues. 2016 2nd

international conference on contemporary computing and informatics (IC3I) (pp. 120–125). IEEE.

[15] Mohapatra, H., & Rath, A. K. (2020). Fault-tolerant mechanism for wireless sensor network. IET wireless

sensor systems, 10(1), 23–30. https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-wss.2019.0106

[16] Akay, O., & Erciyeş, K. (2003). A dynamic load balancing model for a distributed system. Mathematical and

computational applications, 8(3), 353–360.

[17] Sultan, O. H. F., & Khaleel, T. A. (2022). Challenges of load balancing techniques in cloud environment: a

review. Al-rafidain engineering journal (AREJ), 27(2), 227–235.

[18] Welch, L. R., Werme, P. V, Shirazi, B. A., Cavanaugh, C. D., Fontenot, L., Huh, E. N., & Masters, M. W.

(2000). Load balancing for dynamic real-time systems. Cluster computing, 3, 125–138.

[19] Shu, B., Chen, H., & Sun, M. (2017). Dynamic load balancing and channel strategy for apache flume

collecting real-time data stream. 2017 IEEE international symposium on parallel and distributed processing with

applications and 2017 IEEE international conference on ubiquitous computing and communications (ispa/iucc) (pp.

542–549). DOI: 10.1109/ISPA/IUCC.2017.00089

[20] Bokhari, M. U., Alam, M., & Hasan, F. (2016). Performance analysis of dynamic load balancing algorithm

for multiprocessor interconnection network. Perspectives in Science, 8, 564-566.

[21] Domanal, S. G., & Reddy, G. R. M. (2015). Load balancing in cloud environment using a novel hybrid

scheduling algorithm. 2015 ieee international conference on cloud computing in emerging markets (CCEM) (pp.

37–42). IEEE.

[22] Sriram, G. S. (2022). Challenges of cloud compute load balancing algorithms. International research journal of

modernization in engineering technology and science, 4(1), 1186–1190.

[23] Balaji, K. (2021). Load balancing in cloud computing: issues and challenges. Turkish journal of computer and

mathematics education (Turcomat), 12(2), 3077–3084.

[24] Mohapatra, H., & Rath, A. K. (2020). Survey on fault tolerance-based clustering evolution in WSN. IET

networks, 9(4), 145–155. https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-net.2019.0155

